Potentiation of Evoked Vesicle Turnover at Individually Resolved Synaptic Boutons
نویسندگان
چکیده
We have studied synaptic plasticity in hippocampal cell cultures using a new imaging approach that allows unambiguous discrimination of presynaptic function at the level of single synaptic boutons. Employing a protocol designed to test for use-dependent plasticity resembling N-methyl-D-aspartate receptor-dependent long-term potentiation (NMDA-type LTP), we find that brief tetanic stimuli induce a potentiation of evoked synaptic vesicle turnover that lasts for at least 1 hr. Induction of this clearly presynaptic potentiation is blocked by putative postsynaptic glutamate receptor antagonists, suggesting that a retrograde induction signal might be involved. Potentiation appears to occur approximately equally at boutons of low and high initial release probabilities, and evidently does not involve an increase in the size of the total recycling synaptic vesicle pool.
منابع مشابه
Mitochondrial support of persistent presynaptic vesicle mobilization with age-dependent synaptic growth after LTP
Mitochondria support synaptic transmission through production of ATP, sequestration of calcium, synthesis of glutamate, and other vital functions. Surprisingly, less than 50% of hippocampal CA1 presynaptic boutons contain mitochondria, raising the question of whether synapses without mitochondria can sustain changes in efficacy. To address this question, we analyzed synapses from postnatal day ...
متن کاملStability and plasticity of developing synapses in hippocampal neuronal cultures.
To explore mechanisms governing the formation, stability, and elimination of synapses during neuronal development, we used FM 1-43 fluorescence imaging to track vesicle turnover at >7000 individually identified developing synapses between embryonic rat hippocampal neurons in culture. The majority of presynaptic boutons were stable in efficacy and position over a period of 1.5 hr. Activity, evok...
متن کاملLack of synapsin I reduces the readily releasable pool of synaptic vesicles at central inhibitory synapses.
Synapsins (Syns) are synaptic vesicle (SV) phosphoproteins that play a role in neurotransmitter release and synaptic plasticity by acting at multiple steps of exocytosis. Mutation of SYN genes results in an epileptic phenotype in mouse and man suggesting a role of Syns in the control of network excitability. We have studied the effects of the genetic ablation of the SYN1 gene on inhibitory syna...
متن کاملDevelopmental Refinement of Vesicle Cycling at Schaffer Collateral Synapses
At synapses formed between dissociated neurons, about half of all synaptic vesicles are refractory to evoked release, forming the so-called "resting pool." Here, we use optical measurements of vesicular pH to study developmental changes in pool partitioning and vesicle cycling in cultured hippocampal slices. Two-photon imaging of a genetically encoded two-color release sensor (ratio-sypHy) allo...
متن کاملIntrinsic variability in Pv, RRP size, Ca2+ channel repertoire, and presynaptic potentiation in individual synaptic boutons
The strength of individual synaptic contacts is considered a key modulator of information flow across circuits. Presynaptically the strength can be parsed into two key parameters: the size of the readily releasable pool (RRP) and the probability that a vesicle in that pool will undergo exocytosis when an action potential fires (Pv). How these variables are controlled and the degree to which the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 17 شماره
صفحات -
تاریخ انتشار 1996